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Despite the recognized importance of carbides as intermediates
in the initial dissociation of carbon monoxide on transition metal
surfaces in Fischer-Tropsch processes, few transition metal
complexes containing terminal carbido ligands are known.1,2

Anionic molybdenum and tungsten carbides, recently prepared
through the deprotonation of methylidyne functional groups, remain
the only examples of transition metals coordinated to a terminal
carbon atom.3-5 Carbide intermediates formed through the cleavage
of CO by transition metal complexes are known to form structurally
diverse polynuclear carbide-bridged compounds.6-11 Only com-
plexes that possess a relatively inert and congested coordination
sphere appear to protect terminal carbide functionality. We report
the discovery of a new class of air-stable terminal ruthenium carbide
complexes prepared by a novel metathesis-facilitated reaction.

During the investigation of a new class of ruthenium-mediated
ring expansion reactions,12 we performed a stoichiometric reaction
between Grubbs’ ruthenium benzylidene catalysts (1 and2)13,14and
trans-2,3-dicarbomethoxymethylenecyclopropane (Scheme 1).15

Recrystallization of the ruthenium-containing product derived
from 1 in chloroform produced large air-stable yellow crystals that
analyzed as Ru(C)Cl2(P(C6H11)3)2‚(CHCl3)2 (3) in 54% yield.
Carbide3 is diamagnetic, air-stable, and soluble in dichloromethane
and sparingly soluble in pentane. NMR spectra of the complex show
both the absence of a methylidyne peak in the1H NMR and a
quaternary13C resonance atδ ) 471.5, similar to the terminal
carbide resonances observed in the previously reported molybdenum
and tungsten complexes.4,5 An isostructural product,4, in which
one of the tricyclohexylphosphine ligands is replaced by a 1,3-
dimesityl-4,5-dihydroimidazol-2-ylidene ligand was isolated from
a reaction between2 and the methylenecyclopropane precursor in
20% yield. Styrene and dimethyl fumarate products were identified
in NMR and GC/MS spectra of crude reaction residues.

Yellow crystals of4 were subjected to X-ray crystallographic
analysis and a representation of the resulting structure is shown in
Figure 1.16,17 The distorted trigonal bipyramidal coordination
environment around the ruthenium atom surrounds the terminal
carbide unit with two adjacent cyclohexyl groups and one of the
mesityl units. A molecule of benzene is included in a cleft formed
by the proximal cyclohexyl and mesityl ligands. The Ru-C distance
of 1.650 (2) Å is among the shortest distances observed for Ru-C
triple bonds.18,19This distance is 0.15 Å shorter than typical Ru-C
distances in alkylidene complexes.13,20,21 The Ru-P and Ru-Cl
distances are virtually identical to analogous bonds in ruthenium
alkylidene complexes. This seems to suggest substantial similarity
in the electronic environment at ruthenium among the alkylidene
and carbide complexes.

Grubbs has reported the isolation of5 from reactions between
trans-2,3-dicarbomethoxymethylenecyclopropane and Ru(CH-
CHC(C6H5)2)Cl2(P(C6H5)3)2, a bis-triphenylphosphine-substituted
analogue of compounds1 and 2.22 An isostructural bis-tricyclo-
hexylphosphine analogue of5 is a likely intermediate in the
formation of3. The relative stability of5 may be due to the poorer
electron-donating ability of the triphenyl phosphine ligands. Electron
density from the ruthenium center may be required to stabilize the
developing triple bond to the carbide unit during the unusual
elimination of the dimethylfumarate product (Scheme 2).

Figure 1. X-ray structure of Ru(C)Cl2(P(cyclohexyl)3)-(1,3-dimesityl-
4,5-dihydroimidazol-2-ylidene)‚C6H6.
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We are currently investigating whether the mechanism of the
elimination reaction is a stepwise or concerted process and studying
the chemical reactivity of the carbide functional group.
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